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Abstract: We consider the scalar fractional conservation law (FCL)

∂tu+ ∂xf(u) = −(−∂2
x)

λ/2(u) in R× (0, T ), (1)

where −(−∂2
x)

λ/2 is the nonlocal fractional Laplace operator with λ ∈ (0, 1). FCLs are generalizations of
convection-diffusion equations where the local diffusion may depend on the global dynamics. The fractional
Burgers’ equation, for example, is utilized when modeling detonation of gases that are driven by anomalous
diffusion behaviour which can be described by means of the fractional Laplacian.

It is well known that solutions to FCLs may develop shocks in finite time if the diffusion fails to
counterbalance the convection. Accordingly, in the context of numerical methods, low convergence rates
have to be expected and have indeed already been proven by Cifani et al. [1]. Contrary to these worst-case
estimates, one may be interested in achievable convergence rates when dealing with sufficiently smooth
solutions to obtain a more differentiated picture of the numerical performance. This line of reasoning has
also been followed in the setting of pure conservation laws ∂tu+ ∂xf(u) = 0, which share some properties
with FCLs.

In fact, for smooth solutions to conservation laws, Zhang and Shu [2] derived the a-priori error estimate

∥u(tn)− un
h∥L2(R) ≲ hk+1 + τ2, (2)

for a second order Runge-Kutta discontinuous Galerkin (RKDG) method by using Taylor expansion and
energy estimates, ultimately relying on the Gauss-Radau projection. Note that here and in the following,
h is the maximal element width, τ is the time-step, and the numerical solution un

h at time tn is sought in
the space Pk of broken polynomials of degree k

At each time level tn, Zhang and Shu introduce a projection operator Rh that actually depends on
the exact solution un = u(tn): If f ′(un) is positive on any given element, interpolation on Radau points
including the right boundary point is used on that element. Conversely, if f ′(un) is negative, interpolation
on Radau points including the left boundary point is used. Finally, if f ′(un) changes sign on some element
then the standard L2 projection is used on that element.

The study of characteristics shows that if f ′(u(x, 0)) = 0 for some x ∈ R, then f ′(u(x, t)) = 0 for all
t > 0 such that on each interval where f ′(u0) is positive (negative/changes sign), the same is true for
f ′(un). In particular, the projection operator Rh of Zhang and Shu does not depend on time and one has
the important approximation property

∥ηn+1
u − ηnu∥L2(R) ≲ hk+1τ, (3)

for the projection error ηnu := Rh(u
n) − un. In a subsequent Gronwall Lemma, this leads to an error of

magnitude hk+1.
In the context of FCLs, the characteristics argument is not viable and thus one must consider a time

dependent projection operator Rn
h, in general. As a consequence, we are left with only

∥ηn+1
u − ηnu∥L2(R) ≲ hk+1, (4)
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for times tn at which Rn+1
h ̸= Rn

h, in contrast to (3). Due to summation over all time-steps in the anticipated
Gronwall Lemma, the approximation property (4) would yield an error of magnitude hk+1τ−1.

In our work, we modify the projection operator, still denoted by Rn
h, to accommodate a tolerance

w.r.t. the mesh width h. By the regularity assumptions on the flux f and the exact solution u we are then
able to effectively gauge the number of times Nj for which Rn+1

h ̸= Rn
h on any element Ij . This ultimately

leaves us with improved bounds in the Gronwall argument and consequently in the a priori estimate:

Theorem. Let α ≥ 2, f ∈ Cα+1(R) and u ∈ Cα([0, T ];C1(R)) ∩ C([0, T ];Hk+1(R)) be the exact solution
to the FCL (1), then we have

∥un − un
h∥L2(R) +

(
n−1∑
m=0

τ |um − um
h |2Hλ/2(R)

)1/2

≲ hk+1τ−
c(k)
2α + hk+1−λ

2 + τ2, (5)

where uh is the numerical solution given by our upwind RKDG scheme with second order TVD Runge-
Kutta time discretization and c(k) determines the CFL condition, i.e. we impose the time-step restriction
τ c(k) ≲ h with c(1) = 1 and c(k) = 3/4 for all k ≥ 2.
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